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TRACKING FILTERS FOR MULTIPLE-PLATFORM RADAR INTEGRATION

INTRODUCTION

In the 1960's, fleet exercises demonstrated that many targets were not detected by
radar operators. Furthermore postanalysis of video recordings of the radar data revealed
that the radar return from the targets was present in the raw video. Some of the reasons
operators missed targets were operator fatigue, collapsing of upper beams of the 3DI radr
onto a PPL display, jamming, and clutter. Therefore, to improve its surveillance capa-
bility, the Navy decided to associate automatic detection and tracking (ADT) systems
with its radars. Specifically the SPS-48C and RVP (radar video processor) for 2D radars
have been approved for fleet operation. H

On board most naval combat vessels there are two kinds of surveillance radars: 2D
radars (usually UHF band) and 3D radars (S band). In 1973 the Naval Research Labora-
tory [1-4] and the Applied Physics Laboratory (APL) of the Johns Hopkins University
[5] embarked on programs to maximize the information aboard the vessel by integrating
the radar data from different radars into a single track file. The benefits of such a system
would be increased track life and on-line redundancy. At present the SYS-1-D system,r an
operational automatic detection and integrated tracking (ADIT) system developed by
APL, is scheduled to be tested at sea in early 1977.

As an extension of the concept of integration more information can be obtained by
combining the radar data from several platforms into a system track file. In addition to
the advantages of an ADIT system, a platform-to-platform integration system will have
inherent antijamming protection because of its frequency and spatial diversity. Some of
the basic ideas and problems associated with such a system are discussed in NRL
Memorandum Report 3404 [6]. In the current report some tracking filters that canlbe
used for platform-to-platform tracking are discussed.

The basic tracking philosophy and two tracking algorithms (Kalman filter and an
uncoupled maximum-likelihood filter) are discussed in the next section. The accuracy of
the two filters is compared by using a Monte Carlo simulation. The simulation is discussed
in the third section, and the results are given in the fourth section. The conclusions, are
made in the fifth section.

TRACKING FILTERS

Since the raw detections contain the maximum amount of information, communica-
tion bandwidth restrictions will be ignored, and it will be assumed that all detections will
be used to update a track. All detections do not contain the same amount of informa-
tion [6]: one radar could be more accurate than another, or a second detection could

Manuscript submitted November 11, 1976.
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TRUNK AND WILSON

immediately follow (in time) a previous detection. Consequently what is required is a
method of filtering the data (before transmission over the communication channel) to
obtain the detections containing the most information. Then only these detections
would be used to update the track. However, since the question of filtering the detec-
tions is still open, it is assumed in this report that all detections are used to update the
track.

Thp first fil-pr fnnnirlPrPd iks tfh Klammn filtnPr in ry +hn v+nrnnn

and computation requirements are somewhat large, an uncoupled maximum-likelihood
filter is also considered,

Kalman Filter

The Kalman filter is a recursive filter which minimizes the least-square error. The
state equation in xy coordinates [7], which in our case represents the equation of
mAnfintit iS2

X(t + 1) = +t)X(t) + r(t)A(t), )

x(t) I T OO 2 T

XMt O 1 0 O: T 0 axof} 
where X(t) = , 'D(t) =rt( 1 2 (and A 

YMt) 0 01 T F { and

Ltd Lo ° j L o Ti

with X(t) being the state vector at time t consisting of position and velocity components
XM't) x(t), y(t), and y(t), t + 1 being the next observation time, T being the time between
observations, and ax(t) and a,(t) being random accelerations whose covariance matrix is
Q(t). The observation equation is

Yf) = M(t)X(t) + Vt) (2J

where Yt) ={x1m , M(t) 0 0 1 , and Vxt) tV ]

with Y(t) being the measurement at time t consisting of positions xm (t) and ym (t) and
V(t) being zero mean noise whose covariance matrix is R(t).

The problem is solved recursively by first assuming the problem is solved at time
t - 1. Specifically it is assumed that the best estimate Xt - l{t - 1)t at time t - 1 and
its error covariance matrix P(t - lit - 1) are known, where the circumflex signifies an
estimate and X(tis) signifies that X(t) is being estimated with observations up to Y~s).
The six steps involved in the recursive algorithm are as follows:

2
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Step 1. Calculate one step prediction,

i(tit - 1) = q)(t - 1).k~t - lit - 13; (3))

Step 2. Calculate the covariance matrix for one step prediction,

P(tit - 1) = Ca~t - 1) P(t - I t -1) ct - 1) + r(t - i) Q(t -1) ret - 1); (4)

Step 3. Calculate the prediction observation,

Y(t It - 1 } M(t)!(ti t - 1 ); ..: H'5.

Step 4. Calculate the filter gain,

A~t) = P(tit - l)M(t) jm(tp(tlt - 1) M(t) + Rlt)] -;(6)

Step 5. Calculate a new smoothed estimate,

i(tlt) =k(tit - 1) + Amt [Yot - Yitlt - 1)]' (7)

Step 6. Calculate a new covariance matrix,

P(tlt) = (I - A(t)M(t)] Pltlt - I). .D'.8.

In summary, starting with an estimate X(t - lit - 1) and its covariance matrix P(t - it - 1),
after receiving a new observation Y(t) and calculating the six quantities in the recursive
algorithm, a new estimate Xiftlfl and its covariance matrix P(tlt) are obtained.

For the Kalman filter in xy coordinates, the measurement covariance matrix R(t) is
a function of the radar-target geometry. Letting (at time t) rt and Ot be the range and
azimuth of the target with respect to the radar (with the azimuth angle being measured
counterclockwise from the x axis), the elements of the covariance matrix

12t) axy(t)
R(t) - , :'(9)

U& (t) a2(t)

are

a2(t) = C2 cos2 Ot + r2U2 sin2 Vt, (10)

2(t) = a2 sin 2 Ot + r92a2 cos2 Ot, (11)

and

o' (t) = io? -rdo ] sin O cos Ot, (A)

where ar and ao are the variances of the range and azimuth measurement errors
respectively.

3



TRUNK AND WILSON

TARGET MEASUREMENT

CONTOURS OF
EQUAL PRO0ABILITY

X~~~~~~~RADAR __ _______

Fig. I - Typical contours of equal probability for the
position of a target that is detected

For the assumption that the measurement errors are Gaussian, typical contours of
equal probability are shown in Fig. 1. If °r 100 m, ua, = 0.3 0, r = 2 X 10Z m and
0 = 900, the corresponding covariance matrix is

FI6 0]
R 1 (13)

Lo io4j

Thus the radar measures the y coordinate, corresponding to range, rather accurately and
the x coordinate, corresponding to azimuth, rather inaccurately. If a Kalman filter is
used for the radar geometry shown in Fig. 1, the covariance matrix P(tit) will be of the
form

Ptjt= L L (14)
_ (t)

where 1(t) and L(t) are two-by-two matrices and the terms in H are approximately 100
times greater than the corresponding terms in L. The filter gain A(t) is of the form

cz(t) 0

3'(t) 0
Aft) - , (15>

O Qy t)

o0 iy(t)
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MEASUREMENT1

* MEASUREMENT2 0 RADAR 2

* RADAR 1

Fig. 2 - Geometry of two radars and of where they detect a target

and furthermore a,(t) ,(ytt) and k,(t) f ly(t). Tne filter gains would be identcal if
the target's range change were only a fraction of its initial range (the x-measuremert. -
variance r2u2 must remain relatively constant).

If at some instant in time a second radar with a different aspect angle detects. the
target, the situation changes significantly. For example, if as shown in Fig. 2 a second
radar detects the target at an azimuth of 1800 at the same range with the same aceuracy
as the first radar, its measurement covarianee is of the form

fln A A fl

R(t =L' io6j (16)

The filter gain A(t + 1) is of the form

cr(t+1) 0 ]
0,(t + 1) 0At{. i1 _ FAmpun

L\kl, A-L 1)

0 ceyl%(t+lj)

_ O g(y(t+ 1)

and aex(t + 1) t 1, ,3(t + 1) > Px(t)7, a(t + 1) Q0 and Py(t + 1) 0. That is, initially
radar 1 was providing an accurate y measurement and an inaccurate x measurement.
When radar 2 provided an accurate x measurement and an inaccurate y measurement the
accurate measurement is given a weighting of 1, and the inaccurate measurement isgiven
a -rei 4 +,nifg orP A

5
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TRUNK AND WILSON

As a simple numerical example assume that the track is initiated by two detections,
4 seconds apart, made by radar I in Fig. 2. Four seconds later radar I detects the target
and makes the first update of the track with the Kalman filter gains

5/6

1/8

0

0

o 5/e

O ijs

1 0S

If again radar 1 detects the target 4 seconds later, the gains are reduced to

7/10 0

IDfA fA

0 7110

0 3140

(191

However, if radar 2 makes the next detection 4 seconds later, the gains are

=(3)=

1 0

1/12 0

O 10-2

o lo-3

(20)

The gain for the x velocity rose only to 1/12 because the old x measurement, which is
used to calculate the x velocity, is rather inaccurate. However, when a second detection
fro

m
. laa n is Sea ,x .an J wilrs usurby ie nacri Ylcb-e ow

11Le LLUtL Zi ib IiLtlte, P k ) Will L1bu cusiiautuaauy, WJIt;V tll dkiaketAtLC VvJUI4I) tflUI UUW

be estimated.

Kalman Filter with a Turn Detector

The Kalman filter is the optimum filter as long as the target trajectory obeys the
state equation (1), which describes a straight-line trajectory with random perturbations
(the random perturbations bound the filter gains away from zero). However, when the
tget iianeuvers, ine rinanel er- 1LLUsL Ue UdetCLecwiu wit erru-r cvuiaricv Eraul-& wuUs
be increased. In this study the error criterion is

E = Jk~t~t -1) - X(tlt)] M [M P(tlt - 1)M -1 M [X(tlt - 1) - Xktit)]

+ fY(t) -1 kX(tIt) R(t)f JY(t) - X k it)]-

6
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This error is the squared Mahalanobis distance from the smooth position MX(tlt): to the
predicted position MX(tlt - 1) plus the squared Mahalanobis distance from the smooth
position MX(tIt) to the measured position Y(t). The Mahalanobis distance differtAfrom
the Euclideal distance by ubing a coVarianlce-m1at'rix kernel instead of an identbify matrx.

When the error E is greater than a threshold (which in this study was set to: F= 16,
corresponding for example to covariance matrices that are diagonal and smooth coordi-
nates that differ from the predicted and measured positions by twice the standard-
deviation), the error covariance matrix P(t - 1 It - 1) is increased and a new smooth:
position MX(tlt) is calculated. Increasing P(t - lit - 1) causes the new position6l !iii: 11
MX(tIt) to be closer to the measurement Y(t) and further from the prediction .Xi: I '.

Since P(tIt - 1) increases when P(t - 1 it - 1) increased, this increase in P(t - lit - l)Swill
always cause E to decrease. This procedure is repeated until E is less than the tbheusiold.
Specifically terms P1 1, P13, P331, and P33 are increased by VF; terms P12, P14 , Pl. FP23 ,
P32, P34 , P4 0, and P43 are increased by F; and terms P2 2, P2 4, P4 2 , and P4 4 are
increased by F2 . (In this study F = 1 *5n, where n is the number of consecutive. cyariance
matrix increases.) The position covariance elements are not increased as much as-the.
VelocitU, elemetsL because of couplg Ihti Es7 til uncertaint iII plttaiuuIu pUAtio iiUDIL JAU
not only to the uncertainty in the last position but also in the velocity. In a real ysttem
the track should also be bifurcated when a large error is encountered.

Computational Requirements for the Kalman Filter

Since the computational load in performing the Kalman filter (equations (3) through
(8)) appears formidable, care was taken to minimize the number of calculations .(additions
and multiplications). The Kalman filter renuires 50 additions and 61 multiplications.
These numbers take into account the symmetry of covariance matrices and the simplicity
of certain matrices; for example, HP(tit - 1) removes four elements from a four-by-four
matrix and consequently requires no additions or multiplications.

Llue sturage requirement oi the Kalman filter, in addition to the positions and'
velocities, is the ten unique elements of the covariance matrix. In an effort to reduce
the computational load and the storage requirements, a modified maximum-likelihood
approach was used.

Modified Maximum-Likelihood Filter

In this subsection, it will be assumed that the predicted and measured variables are
independent and Gaussian. If the nosition and velority vsrishles were nnniiloraA ovLy,
the maximum-likelihood method would yield the Kalman filter. Consequently, totreduce
the complexity, position and velocity are considered separately.

The joint density of the predicted position Xp and measured position Xm is

P{XpX~~m}=[\S e (1/2)(x PA)Kp 1(XP-A)S L e(12)(xrm-A) -mfXmM1\ 1 j.i0P(XP X.)h e 12(PMKJPP[e l~xl~~md. 22)

7



TRUNK AND WILSON

where Kp and Km are the predicted-position and measured-position covariance matrices
respectively. The maximum-likelihood estimate of the position A is that value of p which
maximizes (22). Taking the partial derivative of the log of (22) with respect to A yields
the expression

K61 (Xp - y) + K;' (Xm - JA). (23)

When (23) is set equal to 0 and solved for p, the maximum-likelihood estimate is obtained
as

A (K 1 + K; )- 1K 'Xp + Kg 1Xm). (24)

AL lb straightfourwarU to shuw thld Lie covariatne oi 1 is

K, E= 4 =(Kj + K~f)-1 * (25)

Using the new position estimate ji and the old smoothed position, a new velocity
estimate can be obtained. Then the new velocity estimate can be combined with old
velocity estimate using an equation with the identical form of (24).

In summary, the problem is originally solved for a given instant in time. Specifically
-1_ _ _ _ s1~~__ 1 __ _::_ xz _ I_ - _ --- _ _ - _ 'Tr _ __ _- LI r!- - ___ _ I!- _ -_ _ ___________the S1motlhled positionl X1 andI bsmooUte vteociyV VS and b£1thi UM'£ePuVd111g COVoUnwUeVt

matrices K, and KJ-1 (inverse) are available. After T seconds a new position Xm is
measured; and the new estimates and covariances are found by calculating the eight
quantities in the following algorithm:

Step 1. Calculate the predicted position Xp,

X =X, + VS T; (26)

Step 2. Calculate the covariance matrix (assuming X. and V8 are independent) for
prediction,

K = KX + T2 K; (27)

Step 3. Calculate the covariance matrix for the smoothed position estimate,

K, = (Kj' +K K;1)f; (28)

Step 4. Calculate the smoothed position estimate,

A = Km (4 Xp + K;' Xm (29)

Step 5. Calculate the new velocity estimate,

VN = 1 - X,)IT; (30)

S
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Step 6. Calculate the covariance matrix (assuming p and X2 are independent) for the new
velocity estimate,

KN= (Kg + A X ) /1 ;o :, 

Step 7. Calculate the inverse covariance matrix for the smoothed velocity estimate,

K-' (Kj1 + K-) (32)

Step 8. Calculate the smoothed velocity estimate,

VK (KJ' Vs + vL VN); (33)

These eight steps complete the cycle: (29) is the smoothed position estimate, (28) is its
covariance matrix, (33) is the smoothed velocity estimate, and (32) is its covariance.
matrix.

Modified Maximum-Likelihood Filter with a Turn Detector

The turn detector is the same one which was used for the Kalman filter. In terms of
the new narontoorc tihe orrnr cri+erinn is

(Xp MK;,s (Xp -,)+ (Xn - -) 1 (Xm (3M)*

When the error exceeds 16, the covariance matrices K8 and KU are both increased by the
factor F (presently F = 1.25). The covariance matrices are continually increased by F
until E < 16 Although there is no reason for increasing K8 and KU by the same :factor,
this procedure has led to good results.

Computational Requirements For the Modified
Maximum-Likelihood Filter

Taking into account the symmetry of the covariance matrices, the maximum-likelihood
method (equations (26) through (33)) requires 37 additions and 59 multiplications:.The
storage requirements, in addition to the positions and velocities, are the six unique:...:
covariance elements of the two covariance matrices KE and K,. Comparing these results
with those of the Kalman filter, it is seen that the maximum-likelihood method provides
little computational advantage. This is because the calculations are essentially repeated
twice for the maximum-likelihood method: once for the smooth position and once for
the smooth velocity. All attempts to simplify the filter by using only one covariance
matrix have failed. The reason is demonstrated by the example's gains given in (18), (19),
and (20). In the example, when the system receives its first measurement from radar .2
the position gain is set close to 1. However it is not until the second measurement from
radar 2 that the velocity gain will rise significantly. Since there may be a considerble
time delay in obtaining this second measurement, two covariance matrices must be: saved.
The need to save two covariance matrices, with the cross terms supplying the crucial
information for triangulation of a target, has aborted all attempts to simplify the tracking
filter.

9



TRUNK AND WILSON

MONTE CARLO SIMULATION

Since the performance of the tracking filters during target maneuvers is extremely
difficult to calculate analytically, a Monte Carlo simulation was used.

Radar Geometry

The simulation involves two platforms. The first ship is centered at the origin of
an xy coordinate system (x1 = y= = 0) whose x axis is through the bow of the ship. The
second ship is at coordinates (X2 , Y2 ) and is oriented parallel to the first ship. Azimuth
is measured as usual in an xy coordinate system: target at (x, y) with respect to radar i
has azimuth angle Qi = tan 1 l [{y - y4)ifx - xi 1. The roiling and pitching of the ships are
assumed to be periodic and are given by

Rift) = RM Sin (t t + 05)

and

Pi(t) = PM sin (2t + , (36)

where RM and PM are the maximum roll and pitch angles, T R and Tp are the roll and
pitch periods, which are independent and uniformly distributed between 10 and 12
seconds, and Yi and ti are independent phase angles uniformly distributed on 0 to 2ir.

Target Trajectory

The target flight profile is specified by an initial range, altitude, azimuth, speed, and
heading. The target proceeds along this heading until time ts, when the target starts a
counterclockwise turn at a specified g value. At te the target ends the turn and proceeds
along a straight line at its present heading. The elevation angle of the target is calculated
by letting x, y, and z be the target coordinates on a flat earth and xi, y1, and hr be the
radar coordinates. Then, if the 4/3 radius of the earth is denoted by Re and if the
notation

Rg = [(X _X) 2 + (y _ y,) 2 ] 1/2 (37)

and R9 1 12 h 112

B = (05# ~)(38)

is introduced, then the elevation angle e of the target is given t81 by

e = tan-1 ( _B2)* (39)

10
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Target Detection and Estimation

The scan time for radar 1 is uniformly distributed between 3.9 and 4.1 seconds, and
the scan time for rdnr 9 is uniformly diostributed between 4.9 anrd 5.1 secronrds'. he:
initial time radar 1 passes over the. target is t = 0, and the initial time radar 2;sweeps past
the target is uniformly distributed between zero and the scan time of radar 2.

The question of whether or not a target is detected is resolved by first calculating
the target signal-to-noise ratio (SIN). Using Blake's model [9j, the muitipath,,propagation
factor F is calculated. Then the S/N is calculated using L

I'FR9\4 . A
S/N 20TV R / (40)

where 0 T is the target cross section in square meters, RD is the range where the .probabil-
ity of detection PD is 0.9 and the probability of false alarm Pfa is 10-6 for a 1-square-
meter tiroret- and R is the target rancse. Using riiruec fronm RnhArtcon rl Al nna nhtsnine
the PD at Pfa = 10-6 for the calculated S/N. A uniformly distributed random number
between 0 and 1 is generated, and if the number is below PD, the target is declared to be
detected.

if the antenna is unstabiiized and if ai and ej are the true azimuth and elevation.
angles of the target, the measured angles are 111ii

[sin ai cos Ri + (cos ai sin Pi + tan ej cos Pi) sin Ru (am (i) =tan-l |,,. ....................... --I + enl.... (41)
L cos a cos ri - tan e sinm jiI'

and

em (i) = sin 1 [cos ej cos ai sin Pi + sin ei cos Pi) cos Ri - cos ei sin ai sin Ri] + ei2,, (42)

where ej, and ei2 are independent Gaussian random variables with variances o and.. .O
respectively. Letting U and V be independent uniformly distributed random variables
between 0 and 1, Gaussian variables with mean zero and variance 02 can be generated]by

e = a(- 2 log U)l ' cos (27rl). .(43)

If one measured only am(i) and not em(i), one would have large azimuth errors. For:
instance, if Rm = 10°, Pm = 50, and e = 150, the azimuth error can be as large as -50 even
though ua = 0.50 [121. However, if em (i) is measured and R; and P. are knownm the .
measurements am (i) and em (i) which are relative to the deck plane of the ship can be
rotated into a system whose xy plane is the plane of the ocean. These equations, which
were derived by George as cited in Ref. 13, are

[-sin Rr sin em (i) + cos Ri sin am (i) cos em (i1
a' (i) =tan-1: m cos Pi cos am (i) Cos em (i) + W sin Pi j

::(44)

11



TRUNK AND WILSON

em' i) = sin 1 [sin Pi cos am (l) cos em {i) + W cos Pi],

W = cos Ri sin em (t) + sin Ri sin am (i) cos em (i).

Radars involved in platform-to-platform radar integration need elevation information f6]
to transmit useful information from one platform to another. Thus, elevation angles are
available to Derform the appropriate corrections.

MONTE CARLO RESULTS

In this section results of the Kalman and maximum-likelihood filters are obtained
for the radar geometry and target trajectories shown in Fig. 3. The radar coordinates are
(0, 0) and (60, -60) km and the radar heights are 23 mi The target-trajectory parameters
are given in Table 1.

It will be assumed that both radars have the same accuracies. Specifically the
standard deviations of the range, azimuth, and elevation measurements are a, - 150 m,
a, = 0 3, and ae = 0•3 .

The performance measure for the tracking filter will be a modified RMS velocity
error defined by

N *

' KMS N 4i

i=1

10O n.mi. _

SG n'm). _

RADAR 1
0 

46

HADAR2

-50 n.mi.

IL x Xt- I Xk-1.J L r v)- I FN1 J I 

a

AlI

112

c

_ m. 50 nsrmi,

(0,0 -60) kmi * OR
1324, -32,41n,m

100 n.mi. 1 50 n.m,

Fig. 3 - Geometry of two radars involved in platform-to-platform
radar integration and of three cases of target trajectories

12
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Table 1 - Target Trajectory Parameters (shown in Fig. 3)

Cross Target Maneuver Roll Pitch
Cs'Range Azimuth Heading Speed Altitude Seto 

Case (n.mi.) (deg) (deg) (m/s) (m) Section Start End Turn RMetdE

(s) I(s) (gs) (dg) (deg)... ..

A 100 45 -90 300 15000 0.5 }300 1300 1 3 11 1 5
B 120 45 -135 300 4500 0.5 100 111.0o 3 15 5

C 1100 0 0 300 4500 1.0 1100 11321t 3 15 5

where V,(i) and V (i) are the true velocities, VZ (i) and ,,(i) are the estimated. yvecities,
and the asterisk indicates that the sum excludes points between t8 and te + 10. The..
samples at the turn are excluded because during a turn the errors are large and .would
dominate VRMS. During a turn what is important is the ability to detect the turn.. - Smnce
hofh filtprs have the same -urn etletpror (comparison of (91 1 to liAW the filter wllhave
the same performance in this area. In the simulation the radar platforms are assumed to
be gridlocked.

The simulation was run five times for the two filters and three target trajectories,
and the average VRMS is given in Table 2. As one would expect, the Kalman :filter-.pro-
vides the more accurate track. Comparison of case-by-case results show that the Kalman
filter reacts more rapidly when a poor initial estimate is made. For example, the velocity
estimates for the third run of case B are shown in Table 3. The initial velocities are the
same, the initialization algorithm being the same. As can be seen from Table :3, while
the velocities from both filters are approaching the true values (V, = Iy, = -215 m/s), the
velocity from the Kalman filter is approaching more rapidly.

Probably adjustments could be made to quicken the convergence of the maximum-
likelihood algorithm. However, since the maximum-likelihood filter is almost as compli-
cated as the Kalman filter, no changes were made, because the Kalman filter would be
used rather than the maximum-likelihood filter.

CONCLUSIONS

The Kalman filter is the optimum tracking filter (with respect to the mean-square
error) regardless of whether or not the radar detections are made from single or multiple
platforms. The performance (specifically the RMS velocity error) of the Kalmanlter.
for two platforms, separated by 46 n.mi., has been calculated for various target trajectories.
An error criterion involving the squared Mahalanobis distances between the smooth:and::
predicted positions and the smooth and measured positions is used to detect target ' :
maneuvers. After a turn has been detected, the covariance matrix is increased (in steps)
wiUtlu tiLe error criterion Is below a crnticai value.

Attempts to find a simple filter, with good performance, have not been productive.
The maximum-likelihood filter obtained by arbitrarily decoupling the position, and
velocity estimates, although obtaining acceptable performance, is almost as complicated as
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Table 2 - Average VRMS (Eq. (46))
For Five Runs of Each of the Cases
in Fig. 3

Case

Average VRMS (mis)

Kalman
Filter

Maximum-
Likelihood

Filter

A 16 | 23

B. I 32 60
- 1 t22 32

Table 3 - Velocity Estimates During the
Third Run of Case B

Velocity Estimates (m/s)

aMaximum-
Time Kalman Filter Likelihood

Filter

vx vy A x vY

12.1 23 -451 23 -451
16.2 -125 -310 -30 -400
20.2 -154 -274 -57 -370
24.3 -474 -248 -82 -341
27.4 -12z -261 -10U -315
28.3 -161 -264 -104 417
32.4 -164 -258 -118 -301
32.4 -170 -251 -118 -301
36.4 -189 -232 -146 -272

the Kalman filter and consequently would not be used. The basic reason behind this
difficulty is that accurate position and velocity estimates (obtained by triangulation)
require the processing of position and velocity covariance matrices. Since both matrices
must be saved and updated, a simple filter does not seem possible.

In summary, the Kalman filter with a turn detector should be used as the tracking
filter for radar detections from multiple platforms.
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